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SUMMARY: 
In the existing typhoon simulation methods, the number and location of typhoons are mostly simulated based on the 
statistical characteristics of historical data. The annual frequency of typhoons is mostly defined by negative binomial 
or Poisson distribution, but there is no conclusive evidence that the annual frequency of typhoon perfectly conforms 
to a particular statistical distribution model. This paper explores to use support vector machine (SVM) to simulate 
typhoons. The classification results are achieved by performing high-dimensional mapping between the 
meteorological parameters and the recorded generated results. This paper also studies the optimal proportion of 
positive and negative examples during training, as well as the optimal ratio of training sets and test sets. Compared 
with the traditional method, SVM method improve the calculation efficiency greatly. In addition, the real 
meteorological data is more fully utilized, taking into account real physical mechanisms. In the case of considering 
the impact of climate change in the future, the predicted meteorological data can be directly input into this model, 
and the typhoon generation pattern considering the impact of climate change can be obtained.  
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1. MOTIVATIONS 
The Northwest Pacific region (WNP) is one of the areas that suffer the most typhoon disasters 
every year, and typhoons (tropical cyclones, TC) are also the top ten natural disasters in the 
world (Cao et al., 2022; Chen et al., 2022). Existing methods for simulating the number and 
location of typhoon rely mostly on parametric and non-parametric estimation methods based on 
statistical dynamics. The parameter estimation method needs to assume a certain distribution in 
advance, but there is no conclusive evidence that the typhoon spawn rate perfectly conforms to a 
definite distribution. The spawn position usually uses a non-parametric estimation method, and 
the Gaussian kernel density estimation (KDE) method is widely used. Traditional statistical 
methods do not take into account the influence of meteorological parameters, making it difficult 
to predict typhoon disasters under climate change conditions. However, with the improvement of 
historical reanalysis data of meteorological parameters recently, it has become possible to 
simulate typhoon considering the actual physical mechanism, which provides a new idea for 
typhoon simulation. At the same time, traditional statistical methods are difficult to 
comprehensively consider many meteorological parameters related to typhoon genesis, so it is 
necessary to find a new method that can directly link meteorological parameters and typhoon 
genesis. 
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Machine learning (ML) is a method that is faithful to all measured data, as well as a mapping 
method that minimizes errors by training massive data. Support vector machine, one of ML 
methods, can take into account a variety of meteorological parameters. Its simple classification 
of high-dimensional mapping can well solve the mapping problem between meteorological 
parameters and typhoon generation results. And in the context of considering future climate 
change, as long as the meteorological parameters under future conditions are input into the 
model, the genesis of typhoons in the future can be predicted, including the starting position and 
number of typhoons. 
 
 
2. METHODS 
This study proposes the method of using SVM (Piccialli and Sciandrone, 2022; Ribeiro Mendes 
Junior et al., 2022) combined with AdaBoost (Li et al., 2022) to directly establish the mapping 
between the typhoon generation result (1 if generated, -1 if not generated) and meteorological 
data. Meteorological parameters used herein include absolute vorticity (AV) at 850hpa, relative 
humidity (RH) at 600hpa, vertical velocity (VV), relative sea surface temperature (SST), and 
vertical wind shear (WS) at 850-200hpa (Tippett et al., 2011).  
 
2.1. Data Division and Evaluation Index 
In order to consider the uncertainty caused by the different meteorological agencies, the 
historical typhoon data are compared using the observations of JMA, CMA, and JTWC. As can 
be seen in Table 1, whether it is 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 and 𝐹1_𝑠𝑐𝑜𝑟𝑒, 𝑇𝑟𝑎𝑛𝑢𝑚: 𝑇𝑒𝑠𝑛𝑢𝑚=7:3 can always 
make these two indicators reach the maximum at the same time. When 𝑂𝑛𝑢𝑚: 𝑁𝑛𝑢𝑚≈1, the two 
planes in Fig. 1 of 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 and 𝐹1_𝑠𝑐𝑜𝑟𝑒 intersect, and both indicators have a large value at 
this ratio. Therefore, under the condition that 𝑇𝑟𝑎𝑛𝑢𝑚: 𝑇𝑒𝑠𝑛𝑢𝑚=7:3 and 𝑂𝑛𝑢𝑚: 𝑁𝑛𝑢𝑚 = 1, the 
classification results of ten working conditions considering the combination of five 
meteorological parameters are obtained, as shown in Fig. 2. 
 
Table 1. The impact of dataset ratio on 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 and 𝐹1_𝑠𝑐𝑜𝑟𝑒(%). 

          𝑇𝑟𝑎𝑛𝑢𝑚: 𝑇𝑒𝑠𝑛𝑢𝑚 

𝑂𝑛𝑢𝑚: 𝑁𝑛𝑢𝑚 

7:1 6:1 5:1 4:1 3:1 7:3 2:1 1:1 

A F A F A F A F A F A F A F A F 

1:5 91.89 91.89 91.55 91.55 91.80 91.80 91.91 91.91 92.20 92.20 92.64 92.64 92.48 92.48 92.39 92.39 

1:4 91.57 91.57 91.06 91.06 91.31 91.31 91.46 91.46 92.09 92.09 92.55 92.55 92.30 92.30 92.26 92.26 

1:3 90.87 90.87 90.71 90.71 90.91 90.91 90.92 90.92 91.67 91.67 92.02 92.02 91.77 91.77 91.43 91.43 

1:2 89.55 89.55 89.49 89.49 89.55 89.55 89.60 89.60 90.52 90.52 90.79 90.79 90.58 90.58 90.29 90.29 

1:1 89.26 89.26 89.35 89.35 89.25 89.25 89.43 89.43 89.86 89.86 89.75 89.75 89.64 89.64 89.10 89.10 

2:1 90.29 90.29 90.45 90.45 90.46 90.46 90.27 90.27 90.68 90.68 90.44 90.44 90.22 90.22 90.11 90.11 

Tips: 𝑇𝑟𝑎_𝑛𝑢𝑚  refers to Train Number; 𝑇𝑒𝑠_𝑛𝑢𝑚  refers to Test Number; 𝑂_𝑛𝑢𝑚  refers to Occurrence Number; 𝑁_𝑛𝑢𝑚  refers to 

Nonoccurrence Number, A refers to 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, F means 𝐹1_𝑠𝑐𝑜𝑟𝑒. 

 

 
 

Figure 1. Optimized three-dimensional schematic 
diagram of 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 and F1_score. 

Figure 2. Classification results of test set 
(𝑇𝑟𝑎_𝑛𝑢𝑚: 𝑇𝑒𝑠_𝑛𝑢𝑚 = 7: 3，𝑂_𝑛𝑢𝑚: 𝑁_𝑛𝑢𝑚 = 1). 

 
2.2. Parameter Selection and Optimization 
Fig. 2 shows that the result of classification accuracy varies with the combination of parameters, 
and some of these parameter combinations must have positive or negative effects on the accuracy. 



 

 

In detail, the row and column where AV and RH are located have the lowest accuracy, so it is 
only necessary to eliminate these two parameters and recombine the remaining parameters. Table 
2 presents the results of only using the Voting method and using AdaBoost and Voting at the 
same time respectively. It can be found that the improvement of the results is the most obvious 
after removing AV and RH at the same time under both situations. It can be found using 
AdaBoost and Voting at the same time increases the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 and 𝐹1_𝑠𝑐𝑜𝑟𝑒 by 3.5%~5% 
compared to Voting alone. 
 
Table 2. Influence of meteorological parameter on 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 and 𝐹1_𝑠𝑐𝑜𝑟𝑒(%). 

Meteorological 

Parameter 

Evaluation  

Index 

All 5 parameter Remove AV Remove RH 
Remove AV 

and RH 

Voting 
AdaBoost

+Voting 
Voting 

AdaBoost

+Voting 
Voting 

AdaBoost

+Voting 
Voting 

AdaBoost

+Voting 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 88.76 92.71 88.39 92.19 89.51 94.58 90.64 95.41 

𝐹1_𝑠𝑐𝑜𝑟𝑒 89.36 92.88 89.05 92.30 89.06 94.39 90.57 95.26 

 
 
3. RESULTS 
The historical reanalysis data of ERA5 from 1979 to 2020 and the typhoon generation data of 
JMA, JTWC and CMA are used for training respectively. Fig. 3 only shows the simulation 
results of historical typhoon generation from 2018 to 2020 of JMA. The prediction results of 
other years are in the same form with a grid resolution of 0.25°. The black circles are the 
historical typhoon generation positions of JMA, and the heat map represents typhoon-prone areas, 
which shows a good agreement between forecasts and historical typhoon locations. Fig. 4 shows 
the results of the interannual distribution regularity obtained by using typhoon records from 
different meteorological agencies. Fig. 4(a), (b), and (c) respectively represent the comparison of 
the sliding averages of the annual generation frequency using the typhoon generation data of 
JMA, JTWC and CMA, and these values have been normalized. Fig. 5 shows the KDE 
comparison between the historical data and the records from 1979 to 2020. 
 

   
Figure 3. Typhoon yearly forecast results (2017-2020, JMA). 

 

   
(a) Historical data of JMA (a) Historical data of JTWC (a) Historical data of CMA 

 

Figure 4. Moving average (MA) comparison of yearly typhoons spawns (normalized) using historical data  
of different agencies (1979-2020). 

 



 

 

   

   

 
Figure 5. KDE comparison between historical records of different agencies and forecasting results (1979-2020). 

 
 
4. CONCLUSIONS 
In summary, this paper uses machine learning methods to build a typhoon generation model in 
the WNP region, and the following conclusions are obtained: (1) The distribution of KDE in a 
single year of different meteorological agencies is obviously different, but with the increase of 
the number of statistical years, the distribution of KDE gradually converges which shows only 
partial inconsistencies in special sea areas (12°N-25°N, 110°E-120°E). (2) The data of different 
meteorological agencies show different pattern in the time course, but the SVM method can 
always accurately represent this changing pattern. (3) It is found that for the problem of typhoon 
generation, 𝑇𝑟𝑎𝑛𝑢𝑚: 𝑇𝑒𝑠𝑛𝑢𝑚=7:3，𝑂𝑛𝑢𝑚: 𝑁𝑛𝑢𝑚=1:1 will obtain the best training results. (4) 
When only the three meteorological parameters of SST, WS and VV are used to generate 
predictions, the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 is 2% higher than that of all five meteorological parameters, and 
the 𝐹1_𝑠𝑐𝑜𝑟𝑒 is 1% higher. (5) The method of using AdaBoost will increase 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 and 
𝐹1_𝑠𝑐𝑜𝑟𝑒 by 3.5%~5%. 
 
 
ACKNOWLEDGEMENTS 
The authors gratefully acknowledge the support of the National Natural Science Foundation of China (52108469, 
52278520). 
 
REFERENCES  
Cao, X., Wu, R., Xu, J., Dai, Y., Bi, M., Lan, X., Zhang, X., 2022. A comparison of tropical cyclone formation over 

the western North Pacific in August between 1996 and 2014. Atmospheric Research 266, 105952. 

Chen, S., Zhang, Y., Xu, J., Shen, W., Ye, G., Lu, Z., 2022. Data assimilation of adaptive observation and 

application for typhoon forecasts over the Western North Pacific. Atmospheric Research 276, 106274. 

Li, J., Lv, J., Wan, A.T.K., Liao, J., 2022. AdaBoost Semiparametric Model Averaging Prediction for Multiple 

Categories. Journal of the American Statistical Association 117, 495–509. 
Piccialli, V., Sciandrone, M., 2022. Nonlinear optimization and support vector machines. Ann. Oper. Res. 314, 15–

47. 
Ribeiro Mendes Junior, P., Boult, T.E., Wainer, J., Rocha, A., 2022. Open-Set Support Vector Machines. IEEE 

Trans. Syst. Man Cybern. Syst. 52, 3785–3798. 
Tippett, M.K., Camargo, S.J., Sobel, A.H., 2011. A Poisson Regression Index for Tropical Cyclone Genesis and the 

Role of Large-Scale Vorticity in Genesis. J. Clim. 24, 2335–2357. 

JMA 

Pre-JMA 

JTWC 

Pre-JTWC 

CMA 

Pre-CMA 


